A geometric zero-one law

نویسندگان

  • Robert H. Gilman
  • Yuri Gurevich
  • Alexei D. Miasnikov
چکیده

Each relational structure X has an associated Gaifman graph, which endows X with the properties of a graph. If x is an element of X, let Bn(x) be the ball of radius n around x. Suppose that X is infinite, connected and of bounded degree. A first-order sentence φ in the language of X is almost surely true (resp. a.s. false) for finite substructures of X if for every x ∈ X, the fraction of substructures of Bn(x) satisfying φ approaches 1 (resp. 0) as n approaches infinity. Suppose further that, for every finite substructure, X has a disjoint isomorphic substructure. Then every φ is a.s. true or a.s. false for finite substructures of X. This is one form of the geometric zero-one law. We formulate it also in a form that does not mention the ambient infinite structure. In addition, we investigate various questions related to the geometric zero-one law.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the zero-one law for connectivity in one-dimensional geometric random graphs

We consider the geometric random graph where n points are distributed uniformly and independently on the unit interval [0, 1]. Using the method of first and second moments, we provide a simple proof of the “zero-one” law for the property of graph connectivity under the asymptotic regime created by having n become large and the transmission range scaled appropriately with n.

متن کامل

Intersecting random graphs and networks with multiple adjacency constraints: A simple example

When studying networks using random graph models, one is sometimes faced with situations where the notion of adjacency between nodes reflects multiple constraints. Traditional random graph models are insufficient to handle such situations. A simple idea to account for multiple constraints consists in taking the intersection of random graphs. In this paper we initiate the study of random graphs ...

متن کامل

J un 2 00 7 A GEOMETRIC ZERO - ONE LAW

Each relational structure X has an associated Gaifman graph, which endows X with the properties of a graph. If x is an element of X , let Bn(x) be the ball of radius n around x. Suppose that X is infinite, connected and of bounded degree. A first-order sentence φ in the language of X is almost surely true (resp. a.s. false) for finite substructures of X if for every x ∈ X , the fraction of subs...

متن کامل

A strong zero-one law for connectivity in one-dimensional geometric random graphs with non-vanishing densities

We consider the geometric random graph where n points are distributed independently on the unit interval [0, 1] according to some probability distribution function F . Two nodes communicate with each other if their distance is less than some transmission range. When F admits a continuous density f which is strictly positive on [0, 1], we show that the property of graph connectivity exhibits a s...

متن کامل

Poisson convergence can yield very sharp transitions in geometric random graphs

We investigate how quickly phase transitions can occur in some geometric random graphs where n points are distributed uniformly and independently in the unit cube [0, 1] for some positive integer d. In the case of graph connectivity for the one-dimensional case, we show that the transition width behaves like n (when the number n of users is large), a significant improvement over general asympto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Log.

دوره 74  شماره 

صفحات  -

تاریخ انتشار 2009